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APPENDIX B

SELECTION AND FITTING OF DISTRIBUTIONS

B.0 INTRODUCTION

An important step in Monte Carlo analysis (MCA) is to select the most appropriate distributions
to represent the factors that have a strong influence on the risk estimates.  This step in the development of
a Monte Carlo model can be very challenging and resource intensive. 

L Specifying probability distributions for all of the input variables and
parameters in a probabilistic risk assessment (PRA) will generally not
be necessary.

If the sensitivity analysis indicates that a particular input variable does not contribute
significantly to the overall variability and uncertainty, then this variable may be represented as a point
estimate.  As discussed in Appendix A, however, different approaches to sensitivity analysis may be
applied throughout the tiered approach (e.g., sensitivity ratios, correlation analysis), and the ability to
reliably identify variables as being minor or major can vary.  Sometimes it can be helpful to develop
probability distributions based on preliminary information that is available from Tier 1 in order to
explore alternative options for characterizing variability and uncertainty.  Likewise, sometimes the
important “risk drivers” are apparent, and resources can be allocated to fully characterize the variability
and uncertainty in those input variables.  Therefore, the process of selecting and fitting distributions may
also be viewed as a tiered approach.  This appendix reviews the methods available to select and fit
distributions and provides guidance on the process for determining appropriate choices depending on the
information needed from the assessment and the information available to define the input variables.

In PRA, there are some important distinctions in the terminology used to describe probability
distributions.  A probability density function (PDF), sometimes referred to as a probability model,
characterizes the probability of each value occurring from a range of possible values.  Probability
distributions may be used to characterize variability (PDFv) or uncertainty (PDFu).  One advantage of
using a PDFv and PDFu is that distributions represent a large set of data values in a compact way (Law
and Kelton, 1991).  For example, a lognormal distribution provides a good fit to a large data set of tap
water ingestion rates (n=5,600) among children ages 1 to 11 years (Roseberry and Burmaster, 1992). 
Therefore, the distribution type (lognormal) and associated parameters (mean and standard deviation)
fully describes the PDFv for intake rates, from which other statistics of interest can be calculated (e.g.,
median, and 95th percentile).  Reducing a complex exposure model to a series of representative and well-
fitting distributions can facilitate both the quantitative analysis and the communication of the modeling
methodology.  Alternatively, a PDFu may be specified to characterize parameter uncertainty.  For
example, the sample mean ( ) is generally an uncertain estimate of the population mean (:) due tox
measurement error, small sample sizes, and other issues regarding representativeness (see Section B.3.1). 
A PDFu can be used to represent the distribution of possible values for the true, but unknown parameter. 
Understanding whether uncertainty or variability is being represented by a PDF is critical to determining
how the distribution and parameters should be specified and used in a PRA. 
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EXHIBIT B-1

DEFINITIONS FOR APPENDIX B

Bayesian Analysis - Statistical analysis that describes the probability of an event as the degree of belief or confidence
that a person has, given some state of knowledge, that the event will occur.  Bayesian Monte Carlo combines a
prior probability distribution and a likelihood function to yield a posterior distribution (see Appendix D for
examples).  Also called subjective view of probability, in contrast to the frequentist view of probability.

Bin - Regarding a histogram or frequency distribution, an interval within the range of a random variable for which a
count (or percentage) of the observations is made.  The number of bins for a histogram is determined on a case-
by-case basis.  In general, equal interval widths are used for each bin; however, in some cases (e.g., Chi-square
test), individual bin widths are calculated so as to divide the distribution into intervals of equal probability.

Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be
counted with integers (e.g., one, two, three) and that has no upper limit.  Examples include the number of tosses
required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is
needed.  The number of dust particles in a volume of air is another example.  Countably finite implies there is an
upper limit (e.g., days of work per year).

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of
occurrence for a random independent variable.  Each value c of the function is the probability that a random
observation x will be less than or equal to c.

Empirical Distribution Function (EDF) -The EDF, also called the empirical CDF (ECDF), is based on the frequency
distribution of observed values for a random variable.  It is a stepwise distribution function calculated directly
from the sample, in which each data point is assigned an equal probability.

Frequency Distribution or Histogram - A graphic (plot) summarizing the frequency of the values observed or measured
from a population.  It conveys the range of values and the count (or proportion of the sample) that was observed
across that range.

Goodness-of-Fit (GoF) Test - A method for examining how well (or poorly) a sample of data can be described by a
hypothesized probability distribution for the population.  Generally involves an hypothesis test in which the null
hypothesis H0 is that a random variable X follows a specific probability distribution F0.  That is, H0: F=F0 and
Ha: F … F0.

Independence - Two events A and B are independent if whether or not A occurs does not change the probability that B
occurs.  Likewise, knowing the value of B does not affect the value of A.  Input variables, X and Y, are
independent if the probability of any paired values (X, Y) is equal to the probability of X multiplied by the
probability of Y.  In mathematical terms, X and Y are independent if f(X, Y)=f(X) x f(Y).  Independence is not
synonymous with correlation.  If X and Y are independent, then their correlation is zero, Cor(X, Y)= 0.  But, the
converse is not always true.  There may be a nonlinear relationship between X and Y that yields Cor(X, Y)=0, but
the variables are highly dependent. 

Nonparametric Method - Also called a distribution-free method, a procedure for making statistical inferences without
assuming that the population distribution fits a theoretical distribution such as normal or lognormal.  Common
examples are the Spearman rank correlation, (see Appendix A) and the bootstrap-t approach..

Parameter - In PRA, a parameter is a quantity that characterizes the probability distribution of a random variable.  For
example, a normal probability distribution may be defined by two parameters (e.g., arithmetic mean and standard
deviation). 

Parametric Distribution - A theoretical distribution specified by a distribution type and one or more parameters. 
Examples include the normal, Poisson, and beta distributions.
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EXHIBIT B-1 —Continued
DEFINITIONS FOR APPENDIX B

Probability Density Function (PDF) -  A function representing the probability distribution of a continuous random
variable.  The density at a point refers to the probability that the variable will have a value in a narrow range
about that point. 

Probability Distribution - The mathematical description of a function that associates probabilities with specified
intervals or values for a random variable.  A probability distribution can be displayed in a graph (e.g., PDF
or CDF), summarized in a table that gives the distribution name and parameters, or expressed as a
mathematical equation.  In PRA, the process of selecting or fitting a distribution that characterizes variability
or uncertainty can also be referred to as applying a probability model to characterize variability or
uncertainty.  In this guidance, the probability model is considered to be one source of model uncertainty.

Step Function - A mathematical function that remains constant within an interval, but may  change in value from one
interval to the next.  Cumulative distribution functions for discrete random variables are step functions. 

Z-score - The value of a normally distributed random variable that has been standardized to have a mean of zero and a
SD of one by the transformation Z=(X–:)/F.  Statistical tables typically give the area to the left of the
z-score value.  For example, the area to the left of z=1.645 is 0.95.  Z-scores indicate the direction (+/-) and
number of standard deviations away from the mean that a particular datum lies assuming X is normally
distributed.  Microsoft Excel’s NORMSDIST(z) function gives the probability p such that p=Pr(Z # z), while
the NORMSINV(p) function gives the z-score zp associated with probability p such that  p=Pr(Z # zp).

B.1.0 CONCEPTUAL APPROACH FOR INCORPORATING A PROBABILITY DISTRIBUTION IN A PRA

Often, more than one probability
distribution may appear to be suitable for
characterizing a random variable.  A step-wise,
tiered approach is recommended for
incorporating probability distributions in a
PRA.  This appendix provides guidance on
selecting and fitting distributions for
variability and parameter uncertainty based on
the overall strategy given in Exhibit B-2. 
Many of the same principles of selecting and
fitting distributions are also given in EPA's
Report of the Workshop on Selecting Input
Distributions for Probabilistic Assessments (U.S. EPA, 1999a).

Probability distributions may be developed to characterize variability or uncertainty.  Example
flow charts for specifying a PDFv and PDFu are given in Figures B-1 and B-2, respectively.  Both
approaches outline an iterative process that involves three general activities:  (1) identify potentially
important sources of variability or uncertainty to determine if a PDF may be needed; (2) apply the
general strategy given in Exhibit B-1 and evaluate plausible alternatives for distributions and parameter
estimates; and (3) document the decision process.  The flowcharts provide a general outline of the
process and contain terms which are explained in subsequent sections.  Just as with the point estimate
approach, different sites may require different probability distributions for input variables, depending on
the unique risk management issues and sources of uncertainty.

EXHIBIT B-2

GENERAL STRATEGY FOR SELECTING
 AND FITTING DISTRIBUTIONS

(1) Hypothesize a family of distributions
(2) Assess quality of fit of distribution
(3) Estimate distribution parameters
(4) Assess quality of fit of parameters
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B.2.0 PRELIMINARY SENSITIVITY ANALYSIS

Selecting and fitting probability distributions for all of the input variables can be resource
intensive and is generally unnecessary.  Ideally, a subset of variables could be identified that contribute
to most of the variability and uncertainty in a risk estimate.  Sensitivity analysis can play an important
role in helping to identify and quantitatively rank the major exposure pathways and variables.  Since the
information obtained from a sensitivity analysis may vary, depending on the approach(es) used and the
information available to characterize the input variables, risk assessors should understand inherent
limitations of each approach.  A variety of approaches that are common for Tier 1 and 2 analyses are
described and applied to a hypothetical example in Appendix A.  

In a Tier 1 assessment, sensitivity analysis is typically limited to exploring the effect of
alternative point estimates on the risk estimate.  These methods can be helpful if additional information
regarding the variability in the input variables is incorporated into the analysis (i.e., sensitivity scores). 
Alternatively, a reasonable approach is to specify preliminary probability distributions for one or more
inputs in order to maximize the advantages of probabilistic methods.  The difference between a
preliminary distribution and a subsequent distribution reflects the level of effort invested in
characterizing variability and uncertainty.  If a robust data set is available in Tier 1 to define point
estimates, then a preliminary distribution may, in fact, fully characterize variability with very high
confidence.  For other variables, summary statistics, rather than sample data, may be available, allowing
for estimates of central tendency or plausible ranges.  The use of preliminary distributions reflects an
effort to employ more robust sensitivity analysis techniques without expending the effort and resources
that might otherwise be applied to a PRA in Tier 2.  The goal of the preliminary analysis would not be
necessarily to evaluate risks and/or develop a PRG; rather, the focus would be on identifying input
variables that may be important to explore more fully.  Preliminary sensitivity analysis can provide
insight into the importance of selecting among alternative probability distributions and exposure
scenarios. 

One-dimensional Monte Carlo simulations with preliminary (or screening-level) distributions can
be run prior to engaging in a more involved process of selecting and fitting distributions.  The
distributions can be selected based on knowledge regarding the mechanisms that result in variability, and
information already available for determining point estimates (e.g., summary statistics, U.S. EPA
guidance, etc.).  Table B-1 provides examples of preliminary distributions that might be selected based
on the type of information available, sometimes referred to as the state of knowledge.  In many cases, the
distribution is intended to estimate the plausible bounds of a variable, while requiring no additional data
collection effort.  For example, given estimates of a lower bound [min], upper bound [max], and the
assumption that each value is equally likely, a uniform distribution would be used to represent variability
(or parameter uncertainty).  If no mechanistic basis for selecting a distribution exists, then the
preliminary distribution would be chosen based on the available information.  For example, given the
estimates of the arithmetic mean [:] and a percentile value [a] for a random variable, an exponential
distribution might be recommended with 8=1/:.

Guidance on matching the choice of the distribution to the state of knowledge is extended to a
more diverse array of scenarios later in this appendix (see Table B-4).
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1The preliminary distributions are based in part on maximum entropy concepts.  Maximum entropy is a technique for
determining the distribution that represents the maximum uncertainty allowed by the available information and data (Vose,
1996).  Although the approach can be used to quickly define distributions that maximize uncertainty, the credibility of the
distribution depends on the use of accurate, unbiased information.

2See Table B-2 for more detailed descriptions of selected distributions.
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Table B-1.  Examples of Preliminary Distributions Based on Information Available1, 2

Information / Constraints Distribution Shape

[a, b] uniform

[a, m, b] triangular

[ a, b, αααα1,,,,    αααα2,,,,    ββββ] beta

[::::, FFFF] normal

γγγγ exponential

[a, b, µ,µ,µ,µ, 
  

 σσσσ] Johnson Sb,
Lognormal

[α,α,α,α, 
  

 ββββ] gamma

 a=minimum,  b=maximum, m=mode, α=shape parameter, :=mean,
 F=standard deviation, γ=average rate of occurrence of events, β=scale,

It may be informative to explore alternative choices for distributions applied to the same
variable.  For example, a simple yet informative approach is to run two 1-D MCA simulations for
variability with an input variable characterized first by a Johnson Sb (i.e., a four-parameter lognormal
distribution; Hahn and Shapiro, 1967) and then by a normal distribution.  The difference in the risk
distribution, especially at the percentile that is relevant to the risk management decision (e.g.,
95th percentile), may offer insights regarding the importance of the shape of the PDFv.

B.3.0 WHAT DOES THE DISTRIBUTION REPRESENT?

Distributions may be specified to characterize variability or uncertainty.  Often, a Monte Carlo
simulation of variability will focus on describing differences between individuals in a population (i.e.,
inter-individual variability).  In this case, the goal is to select a distribution that is representative of the
target population—the set of all receptors that are potentially at risk.  There may be uncertainty that the
choice of PDFv reflects variability in the target population.  In general, risk assessors should fully
disclose uncertainties in the PDFv, especially because the use of a distribution instead of a point estimate
may inappropriately suggest that there is a greater state of knowledge.  Following the tiered process (see
Chapter 2, Figure 2-1), there are multiple opportunities to consider consequences of alternative modeling
approaches early in the process of developing a probabilistic model.  The importance of relating the
distribution to the target population, clearly distinguishing between variability and uncertainty, and
evaluating data representativeness is emphasized in Sections B.3.1, B.3.2 and B.4.
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B.3.1 CONCEPTS OF POPULATION AND SAMPLING

The distinction between a target population, a sampled population, and a statistical population
should be considered carefully when evaluating information for use in both Tier 1 and Tier 2 of a PRA. 
The target population is often considered to be the “population of concern”.  A risk assessor is often
interested in quantifying specific attributes of the population (e.g., exposure duration, exposure
frequency, etc.).  A sampled population is the set of receptors available for selection and measurement. 
For purposes of this appendix/guidance, the sampled population may be the target population or it may
be a different population that is thought to be representative of the target population.  For purposes of
this guidance, a statistical population is an approximation of the target population based on information
obtained from the sampled population.

Distributions are generated from representative sample populations to make inferences about the
target population.  Ideally, a sampled population should be a subset of a target population and should be
selected for measurement to provide accurate and representative information about the exposure factor
being studied.  However, defining representative samples is a matter of interpretation.
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Sensitivity Analysis
(i.e., Tier 1 and Tier 2)

Is the factor 
influential?

Use a health protective 
point estimate

Present in workplan
and report

Is the factor     
amenable to expert 

judgment?

Conduct expert 
elicitation for PDFAre the data 

representative of 
of the target 
population?

No

Yes

Yes

Yes

No

No

No

Continued on next 
page

NoDo sufficient data 
exist or can they be 
collected to run a 

refined 1-D MCA?

Yes

Yes

Present PDF/EDF in 
workplan and report

Can the data be 
adjusted to better 
represent the target 
population (e.g., 
weighting factors)

Consider the mechanistic 
characteristics of the data 
(e.g., continuous or discrete 
variable)

Figure B-1 (page 1 of 2). Conceptual approach for incorporating probability distributions
for variability in PRA.
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Present PDF/EDF in 
work plan and report

(Continued from previous page)

Summary statistics and graphical data 
exploration (e.g., histograms)

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate percentile 
values of EDF

No Yes

Appropriate 
Goodness-of-Fit?

Estimate 
parameters

Apply truncation limits 
as appropriate

Specify a mixture of 
distributions

Would a 
mixture of 

distributions 
better represent 

the data?

Estimate tails and 
truncation limits

No

Yes

No

Yes

Present PDF/EDF in 
work plan and report

(Continued from previous page)

Summary statistics and graphical data 
exploration (e.g., histograms)

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate percentile 
values of EDF

No Yes

Appropriate 
Goodness-of-Fit?

Estimate 
parameters

Apply truncation limits 
as appropriate

Specify a mixture of 
distributions

Would a 
mixture of 

distributions 
better represent 

the data?

Would a 
mixture of 

distributions 
better represent 

the data?

Estimate tails and 
truncation limits

No

Yes

No

Yes

Figure B-1 (page 2 of 2).  Conceptual approach for incorporating probability distributions
for variability in PRA.
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Identify dominant 
exposure pathway(s) from

sensitivity analysis
(Appendix A, Section B.2.0)

Identify factor(s)that may
contribute to uncertainty in 

the risk distribution
(Appendix A, Section B.2.0)

Select a plausible risk 
exposure model for the 

exposure pathway
(Fig. B-2b)

Select probability
distribution(s) for variability

in exposure factor(s) (Fig. B-1) 

Quantify parameter 
uncertainty with point 

estimates or distribution(s)
(Fig. B-2c)  

Run simulation to 
propagate variability and 
uncertainty (e.g., multiple 

1-D MCAs; 2-D MCA;  
MEE, etc.) 

Continue
quantifying
uncertainty?

Present
results in graphical
and tabular format

YesNo

Figure B-2a  (page 1 of 3).  Conceptual approach for quantifying model and parameter 
uncertainty in PRA.
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Run simulation 
with candidate 
exposure model

Identify dominant
exposure pathway(s) 

from
Sensitivity Analysis

(Appendix A and Section 
B.2.0)

Is more than 
one model

plausible for an 
exposure pathway? 

Identify and evaluate the exposure 
factor(s) quantified by a 

candidate exposure model

Purpose and Objectives
• regulatory context
• scientific questions addressed
• application niche (physical, 

chemical, biological system)
• status of agency and/or peer review

Defining and Limiting Components 
• process(es) characterized 

(e.g., transport, diffusion,
volatilization, bioavailability, etc.)

• temporal and spatial scales 
• level of aggregation/simplification 

Theoretical Basis
• mechanistic basis for algorithms

• numerical or analytic solution

Select alternative
exposure model

No Yes

No

Yes

Is the 
exposure model 

appropriate?

Run simulation 
with candidate 
exposure model

Identify dominant
exposure pathway(s) 

from
Sensitivity Analysis

(Appendix A and Section 
B.2.0)

Is more than 
one model

plausible for an 
exposure pathway? 

Identify and evaluate the exposure 
factor(s) quantified by a 

candidate exposure model

Purpose and Objectives
• regulatory context
• scientific questions addressed
• application niche (physical, 

chemical, biological system)
• status of agency and/or peer review

Defining and Limiting Components 
• process(es) characterized 

(e.g., transport, diffusion,
volatilization, bioavailability, etc.)

• temporal and spatial scales 
• level of aggregation/simplification 

Theoretical Basis
• mechanistic basis for algorithms

• numerical or analytic solution

Select alternative
exposure model

No Yes

No

Yes

Is the 
exposure model 

appropriate?

Is the 
exposure model 

appropriate?

Figure B-2b (page 2 of 3).  Detailed conceptual approach for incorporating model uncertainty in PRA.
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Present results in 
graphical and 
tabular format

Estimate parameters 
(e.g., MLE, method of 

moments, etc.)

Is information 
available to quantify 

parameter 
uncertainty? 

Is the parameter 
amenable to expert 

elicitation?

Conduct expert 
elicitation

Select distribution 
(or point estimate) for 

uncertainty

Run simulation to 
propagate variability 

and uncertainty

Should an alternative 
probability model 

(i.e., PDFv or PDFu) 
be explored?

Continue with 
process 

acknowledging 
limits of data

No

Yes Yes

Yes No

No

Run sensitivity 
analysis to identify 

important sources of 
uncertainty

Identify candidate probability 
distribution(s) for variability (Fig. B-1):

• mechanistic basis for variability 
• exploratory data analysis
• expert judgment

Present results in 
graphical and 
tabular format

Estimate parameters 
(e.g., MLE, method of 

moments, etc.)

Is information 
available to quantify 

parameter 
uncertainty? 

Is information 
available to quantify 

parameter 
uncertainty? 

Is the parameter 
amenable to expert 

elicitation?

Is the parameter 
amenable to expert 

elicitation?

Conduct expert 
elicitation

Select distribution 
(or point estimate) for 

uncertainty

Run simulation to 
propagate variability 

and uncertainty

Should an alternative 
probability model 

(i.e., PDFv or PDFu) 
be explored?

Should an alternative 
probability model 

(i.e., PDFv or PDFu) 
be explored?

Continue with 
process 

acknowledging 
limits of data

No

Yes Yes

Yes No

No

Run sensitivity 
analysis to identify 

important sources of 
uncertainty

Identify candidate probability 
distribution(s) for variability (Fig. B-1):

• mechanistic basis for variability 
• exploratory data analysis
• expert judgment

Figure B-2c (page 3 of 3).  Detailed conceptual approach for incorporating parameter
uncertainty in PRA.
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B.3.2 CONSIDERING VARIABILITY AND UNCERTAINTY IN SELECTING AND FITTING DISTRIBUTIONS

Multiple probability distributions may be used to describe variability and uncertainty in an input
variable.  For example, a normal probability distribution may be selected to characterize variability in
body weight, whereas a uniform distribution may selected to characterize uncertainty in the estimate of
the arithmetic mean of the normal distribution.  The appropriate interpretation and analysis of data for an
exposure variable will depend on whether one is specifying a PDFv or PDFu.  Figure B-1 outlines one
useful process for selecting distributions for variability, whereas Figure B-2 (three pages) outlines a
useful process for quantifying both model and parameter uncertainty.

Variability generally refers to observed differences attributable to true heterogeneity or diversity
in a population (U.S. EPA, 1997b).  Variability results from natural random processes.  Inter-individual
variability may stem from environmental, lifestyle, and genetic differences.  Examples include human
physiological variation (e.g., natural variation in body weight, height, breathing rates, drinking water
intake rates), changes in weather, variation in soil types, and differences in contaminant concentrations in
the environment.  Intra-individual variability may reflect age-specific changes (e.g., body weight and
height).  Variability is not reducible by further measurement or study.  A PDF for variability can usually
be obtained by fitting a distribution to the sample measurements. 

Sources of Uncertainty

Uncertainty generally refers to the lack of knowledge about specific factors, parameters, or
models (U.S. EPA, 1997b).  Although uncertainty in exposure and risk assessment may be unavoidable
due to the necessary simplification of real-world processes, it generally can be reduced by further
measurement and study.  Parameter uncertainty may stem in part from measurement errors, sampling
errors, or other systematic errors in the collection and aggregation of data.  Model uncertainty may reflect
the simplification of a complex process, a mis-specification of the exposure model structure, a misuse or
misapplication of an exposure model, use of the wrong distributional model, and the use of surrogate data
or variables.  Scenario uncertainty may reflect uncertainty in an exposure model, such as the relevance of
specific exposure pathways to the target population.  A conceptual exposure model can be used to
provide direction in specifying a probability distribution for uncertainty.  For example, the concentration
term in a Superfund risk assessment typically represents the long-term average concentration to which a
receptor is exposed (see Chapter 5).  An uncertainty distribution for the concentration term could be
developed in part from ideas about the statistical uncertainty of estimating the long-term average from a
small sample, and the assumption of random movement of the receptors within a defined exposure unit.

Probability Distributions and Model Uncertainty

This appendix primarily focuses on methods for quantifying uncertainty associated with both the
selection of a variability distribution, and estimating parameters of a distribution.  A probability
distribution can be referred to as a type of model in the sense that it is an approximation, and often a
simplified representation of variability or uncertainty that combines both data and judgment.  A broader
use of the term model refers to a representation of a chemical, physical, or biological process.  In risk
assessment, many different models have been developed, with varying objectives, major defining and
limiting components, and theoretical basis.  Figure B-2b provides a general process for exploring model
uncertainty of this type.  This figure reflects the concepts and spirit of the Agency Guidance for
Conducting External Peer Review of Environmental Regulatory Modeling (U.S. EPA, 1994).  In general,
EPA regional risk assessors should be consulted in order to determine the types of exposure and risk
models that may be plausible for quantifying exposure at a particular site.
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Parameter Uncertainty

Quantifying parameter uncertainty in a probabilistic model typically requires judgment (see
Appendix C).  When data are uncertain due to, for example, small sample sizes or questionable
representativeness (Section B.3.1), Monte Carlo simulation can be a useful tool for demonstrating the
effect of the uncertainty on the risk estimates.  It is most important to model uncertainty when the
sensitive input variables are uncertain.  Uncertainty can be quantified in both the point estimate approach
(e.g., a range of possible central tendency exposure values) or a probabilistic approach (e.g., a range of
possible values for the arithmetic mean of a distribution).  While a quantitative uncertainty analysis may
complicate a risk management decision by suggesting that risk estimates are highly uncertain, this
information can be helpful by focusing additional efforts towards collecting data and reducing
uncertainty in the most sensitive input variables.  Likewise, if an estimated risk is below a regulatory
level of concern, even after quantifying highly uncertain inputs to the exposure model, the risk manager
may be more confident in a decision.  As emphasized in Figures B-2a, B-2b, and B-2c, risk assessors
should generally refrain from setting ad hoc probabilities to different candidate distributions in a single
Monte Carlo simulation.  Instead, this guidance strongly recommends exploring model or parameter
uncertainty by running a separate simulation with each candidate model.  For example, rather than
randomly assigning a beta distribution or a lognormal distribution to an exposure variable for each
iteration of a simulation, separate simulations should be run with the candidate probability distributions. 
Similarly, if a range of temporal or spatial scales is plausible for quantifying exposure, multiple
simulations should be designed to demonstrate the importance of these assumptions on the risk estimates.

Uncertainty in parameter estimates may be characterized using a variety of methods.  Similar to a
PDF for variability, a PDF for parameter uncertainty may be represented by a probability distribution
with a unique set of parameters.  Sometimes the distribution for uncertainty can be specified by knowing
(or assuming) a distribution for variability.  For example, if X is a normally distributed random variable,
the Student’s t distribution and the Chi-square (P2) distribution can be used to develop PDFu’s for
random measurement error uncertainty in the sample mean and variance, respectively.  The PDFu for
both the Student’s t and Chi-square distributions is determined by the sample size (n).  If a PDFu cannot
be determined from the PDF for variability, or assumptions regarding the underlying distribution for
variability are not supportable, nonparametric or “distribution free” techniques may be used (e.g.,
bootstrapping).  Both parametric and nonparametric techniques may yield confidence intervals for
estimates of population parameters.  

B.4.0 DO DATA EXIST TO SELECT DISTRIBUTIONS?

Developing site-specific PDFs for every exposure assumption (or toxicity value, in the case of
ecological risk) can be time and resource intensive, and in many cases, may not add value to the risk
management decision.  For those exposure variables that do exert a significant influence on risk, a PDF
may be developed from site-specific data, data sets available in the open literature (e.g., EPA’s Exposure
Factors Handbook, U.S. EPA 1997a), or from existing PDFs in the literature (e.g., Oregon DEQ, 1998).

At Superfund sites, perhaps the most common exposure variable that will be described by site-
specific data will be the media concentration term.  The sample (i.e., collection of empirical
measurements) will most often be used to estimate either a point estimate of uncertainty (e.g., an upper
confidence limit for the arithmetic mean concentration—the 95% UCL), or a distribution that
characterizes the full distribution of uncertainty in the mean.  Exposure variables such as ingestion rates,
exposure duration, and exposure frequency will most likely be derived from existing PDFs or data sets in
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the open literature.  The Agency supports the development PDFs that may be generally applicable to
different sites (e.g., body weight, water intake, and exposure duration) (U.S. EPA, 1999b, 2001).  Until
final recommendations of PDFs are available for the more generic exposure variables, PDFs for exposure
variables that lack adequate site-specific data will typically be selected from: (1) existing PDFs; (2) data
on the entire U.S. population; or (3) data on subsets of the U.S. population that most closely represent the
target population at a site.  If risks to a sensitive subpopulation, such as young children, elderly adults,
ethnic groups, or subsistence fishermen, are a concern at a site, then existing PDFs or data sets that best
characterize these subpopulations would be preferable to national distributions based on the entire U.S.
population.  If adequate site-specific data are available to characterize any of the exposure variables,
distributions can be fit to those data. 

Uncertainty Associated with Sample Size

An appropriate question to consider when evaluating data sets for use in exposure and risk
assessment is, “What sample size is sufficient?”  Generally, the larger the sample size (n), the greater
one’s confidence in the choice of a probability distribution and the corresponding parameter estimates. 
Conversely, for small n, Goodness-of-fit (GoF) tests (see Section B.6.2) will often fail to reject many of
the hypothesized PDFs.  In general, there is no rule of thumb for the minimum sample size needed to
specify a distribution for variability or uncertainty.  Increasing a sample size may be an appropriate
option to consider when evaluating risk management strategies to reduce uncertainty. 

Statistical sampling, in general, is important to consider when estimating parameters of a
probability distribution.  One rule of thumb is that the parameters that reflect the central tendency of a
distribution (e.g., arithmetic mean, median, mode) can be estimated with greater confidence than
parameters that reflect the extremes of the distribution (e.g., 95th percentile).  When deciding on
appropriate truncation limits (minimum and maximum values), it is unlikely that the statistical sample
actually includes the plausible bounds.  See Section B.5.7 for more detailed guidance on specifying
truncation limits for probability distributions.

B.4.1 WHAT ARE REPRESENTATIVE DATA?

The question, “What is a representative sample?”, is important to address when selecting and
fitting distributions to data.  Many of the factors that may determine representativeness (e.g., sample size
and the method of selecting the target, and sample population (Section B.3.1)) are relevant to both point
estimate and PRA.  EPA’s Guidance for Data Usability in Risk Assessment, Part A (U.S. EPA, 1992)
describes representativeness for risk assessment as the extent to which data define the true risk to human
health and the environment.

The goal of representativeness is easy to understand.  However, evaluating data to determine if
they are representative is more difficult, especially if the problem and decision objectives have not been
clearly defined.

The importance of representativeness also varies with the level of complexity of the assessment. 
If a screening level assessment is desired, for example, to determine if concentrations exceed a health
protective exposure level, then representativeness may not be as important as health protectiveness.
However, if a complete baseline risk assessment is planned, the risk assessor should generally consider
the value added by more complex analyses (e.g., site-specific data collection, sensitivity analysis, and
exposure modeling).  A tiered approach for making these decisions for a PRA is presented in Chapter 2,
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and examples of more complex analyses are presented in Appendix D.  In addition, the Agency (U.S.
EPA, 1999a) summarizes the advantages and weaknesses of proposed checklists for risk assessors to
evaluate representativeness of exposure factors data.

For purposes of this guidance, a surrogate study is one conducted on a sampled population that is
similar to, but not a subset of, the target population.  When using surrogate data, the risk assessor should
generally exercise judgment about the representativeness of the data to the target population.  For
example, the distribution of body weights of deer mice from two independent samples from similar
ecosystems may differ depending on the age structure, proportion of males and females, and the time of
year that the samples were obtained.  When in doubt about which study results to use in defining a
probability distribution, one option is to develop a distribution and calculate risks with each sample
independently, and compare the results.  This approach can be a simple, but effective type of uncertainty
analysis.  At a minimum, uncertainties associated with the use of surrogate studies should be discussed in
the assessment.

In many cases, the surrogate population shares common attributes with the target population, but
is not truly representative.  The risk assessor should then determine the importance of the discrepancies
and whether adjustments can be made to reduce those differences.  There are a wide variety of methods
that can be used to account for such discrepancies, depending on the available information.  Summary
statistics (e.g., as presented by the Exposure Factors Handbook, U.S. EPA, 1997a) can be used to
estimate linear characteristics of the target population from the sample population.  For example, if the
mean, standard deviation, and various percentiles of the sample population are known, then the mean or
proportion exceeding a fixed threshold can be calculated using a simple weighted average.  Adjustment
options are more numerous if the risk assessor has access to the raw data.  Adjustments for raw data
include: weighted averages, weighted proportions, transformations, and grouping of the data based on the
available information (e.g., empirical data, and professional judgment).

In most cases, the evaluation of data representativeness will necessarily involve judgment.  The
workplan should generally include a description of the data, the basis for the selection of each
distribution, and the method used to estimate parameters (see Chapter 2).  Empirical data (i.e.,
observations) are typically used to select distributions and derive parameter estimates.  However, it may
be necessary to use expert judgment or elicitation in cases where the quality or quantity of available data
are found to be inadequate.

B.4.2 THE ROLE OF EXPERT JUDGMENT

Expert judgment refers to inferential opinion of a specialist or group of specialists within an area
of their expertise.  When there is uncertainty associated with an input variable, such as a data gap, expert
judgment may be appropriate for obtaining distributions.  Note that distributions elicited from experts
reflect individual or group inferences, rather than empirical evidence.  Distributions based on expert
judgment can serve as Bayesian priors in a decision-analytic framework.  The distributions and Bayesian
priors can be modified as new empirical data become available.  There is a rich literature base regarding
the protocol for conducting expert elicitations and using the results to support decisions (Morgan and
Henrion, 1990).  Elicitation of expert judgment has been used to obtain distributions for risk assessments
(Morgan and Henrion, 1990; Hora, 1992; U.S. EPA, 1997b) and for developing air quality standards
(U.S. EPA, 1982).
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EXHIBIT B-3
FACTORS TO CONSIDER IN SELECTING A

PROBABILITY DISTRIBUTION*
C Is there a mechanistic basis for choosing a

distributional family?  
C Is the shape of the distribution likely to be

dictated by physical or biological properties or
other mechanisms?

C Is the variable discrete or continuous? 
C What are the bounds of the variable? 
C Is the distribution skewed or symmetric?  
C If the distribution is thought to be skewed, in

which direction?  
C What other aspects of the shape of the

distribution are known?
C How well do the tails of the distribution

represent the observations?

*Source: U.S. EPA, 1997b

Bayesian analysis is a statistical approach that allows the current state of knowledge, expressed
as a probability distribution, to be formally
combined with new data to reach an updated
information state.  In PRA, Bayesian Monte
Carlo analysis (Bayesian MCA) can be used to
determine the reduction in uncertainty arising
from new information.  When combined with
techniques from decision analysis, Bayesian
MCA can help to determine the type and quantity
of data that generally should be collected to
reduce uncertainty.  The benefits and limitations
of expert elicitation, Bayesian statistics, Bayesian
MCA, and decision analysis (i.e., value of
information [VOI]), as applied to PRA, are
discussed in greater detail in Appendix D.

B.5.0 FITTING DISTRIBUTIONS TO DATA

Sometimes more than one probability
distribution may adequately characterize
variability or uncertainty.  The choice of a
distribution should be based on the available data
and on knowledge of the mechanisms or
processes that result in variability.  In general, the
preferred choice is the simplest probability model
that adequately characterizes variability or uncertainty and is consistent with the mechanism underlying
the data.  For example, a log-logistic distribution would not necessarily be selected over a 2-parameter
lognormal distribution simply because it was ranked higher in a GoF test by a statistical software
package.  Some distributions (e.g., normal, lognormal) are well known among risk assessors.  The
statistical properties for these distributions are well understood and the formal descriptions can often be
brief.  

Important factors to consider in selecting a PDF are described in Exhibit B-3.  An initial step in
selecting a distribution should be to determine if the random variable is discrete or continuous. 
Continuous variables take any value over one or more intervals and generally represent measurements
(e.g., height, weight, concentration).  For a continuous variable, a mathematical function generally
describes the probability for each value across an interval.  Discrete variables take either a finite or
countably infinite number of values.  Unique probabilities are assigned to each value of a discrete
variable.  The number of rainfall events in a month is an example of a discrete random variable, whereas
the amount of rainfall is a continuous variable.  Similarly, the number of fish meals per month is a
discrete variable, whereas the average size (mass) of a fish meal is continuous.  

Another important consideration is whether there are plausible bounds or limits for a variable. 
For example, it is highly unlikely that an American adult will weigh less than 30 kg or more than 180 kg. 
Most exposure variables may assume any nonnegative value within a plausible range.  Therefore,
distributions will generally be truncated at a minimum of zero (or higher), or a probability distribution
that is theoretically bounded at a nonzero value may be specified (see Table B-3).  A more detailed
discussion of factors to consider in selecting a PDF and specifying parameter values is provided below.
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B.5.1 CONSIDERING THE UNDERLYING MECHANISM

There may be mechanistic reasons depending on known physical or biological processes that
dictate the shape of the distribution.  For example, normal distributions result from processes that sum
random variables whereas lognormal distributions result from multiplication of random variables.  A
Poisson distribution is used to characterize the number of independent and randomly distributed events in
a unit of time or space.  An exponential distribution would describe the inter-arrival times of independent
and randomly distributed events occurring at a constant rate.  If, instead, the elapsed time until arrival of
the kth event is of interest, then the appropriate probability distribution would be the gamma distribution
(Morgan and Henrion, 1990).

L In all cases, it is incumbent on the risk assessor to explain clearly and fully the
reasoning underlying the choice of a distribution for a given exposure
variable—primarily from a mechanistic standpoint if possible.

Table B-2 lists some of the probability distributions that may commonly be used in PRA.  This is
not an exhaustive list, and the scientific literature contains numerous examples with alternative
distributions.  Where practicable, a mechanistic basis is presented for the choice of the distribution.  For
some distributions, such as beta, triangular, and uniform, a mechanistic basis is not offered because it is
unlikely that a chemical or biological process will yield a random variable with that particular shape. 
Nevertheless, such distributions may be appropriate for use in PRA because they reflect the extent of
information that is available to characterize a specific random variable.  Preliminary distributions are
discussed in Section B.2.0 and Table B-4.  Because many of the distributions given in Table B-2 can
assume flexible shapes, they offer practical choices for characterizing variability.

Table B-2 also illustrates probability distributions (both PDFs and CDFs) commonly used in
PRA.  While intuitively appealing, identifying a mechanistic basis for a distribution can be difficult for
many exposure variables; however, it may be relatively apparent that the variable is bounded by a
minimum (e.g., ingestion rate $ 0 mg/day) and a maximum (e.g., absorption fraction # 100%), or that the
relevant chance mechanism results in a discrete distribution rather than a continuous distribution, as
described above.

For each distribution, one or more examples with different parameter estimates are given to
demonstrate the flexibility in the shape of the PDF.  In addition to the descriptions of the distributions in
Tables B-2, Table B-3 provides a summary of the parameters and theoretical bounds that define the
PDFs.  For a further discussion of characteristics of PDFs see Thompson, 1999.  Figures (a-h)
immediately following Table B-2 present examples of PDFs and the corresponding CDFs for
distributions commonly used in PRA.
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Table B-2.  Examples of Selected Probability Distributions for PRA.

Distribution Mechanistic Basis Example(s)

Beta
Figure (e)

Describes a continuous random variable with
finite upper and lower bounds.  This
distribution can take on very flexible shapes,
but generally does not have a mechanistic
basis.

Absorption fraction bounded by 0 and 100%;
fraction of time an individual spends indoors.

Binomial Describes a discrete random variable produced
by processes that: (1) occur in a fixed number
n of repeated independent “trials”; (2) yield
only one of two possible outcomes (e.g.,
“success” or “failure”) at each trial; and
(3) have constant probability p of “success”.  A
binomial distribution is characterized by
parameters n, p, and x, representing the number
of trials, the probability of success of each
trial, and the number of successes,
respectively.

The number of animals with tumors (or some
other quantitative outcome) in a chronic animal
bioassay.

Exponential
Figure (h)

If instead of counting the number of events in
the Poisson process (below), one measures the
time (or distance) between any two successive,
random, independent events. 

The length of time between two radiation
counts; length of time between major storm
events; distance between impact points of two
artillery shells.

Gamma
Figure (g)

Similar to exponential except that time until
occurrence of the kth event in the Poisson
process is measured (rather than time between
successive events).  Reduces to exponential
when k=1.

Time until kth radiation count; elapsed time until
kth major storm event. 

Lognormal
Figure (b)

Multiplication of a large number of random
variables, or equivalently adding the
logarithms of those numbers, will tend to yield
a distribution with a lognormal shape.

Chemical concentrations in environmental
media; media contact rates; rates and flows in
both fate and transport models.  Because the
basic risk equation is multiplicative,
distributions of risk are generally lognormal.  In
practice, lognormal distributions often provide
good fits to data on chemical concentrations in
a variety of media (Gilbert, 1987; Ott, 1990).

Normal
Figure (a)

Addition of independent random variables,
with no one variable contributing substantially
to the total variation of the sum, will tend to
yield a distribution with a normal shape.  This
result is established by the central limit
theorem.

The “Gaussian Plume Model” for the dispersion
of air pollutants is based on the idea that, at a
micro level, individual parcels of air, or
molecules of pollutants, are subject to many
random collisions from other molecules that act
together as if a large number of random
numbers were being added/subtracted from an
initial 3-dimensional description of a position.
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Poisson Observed when counting the frequency of
discrete events, where the events are
independent of one another, and randomly
distributed in space or time.  Approximates the
binomial distribution when sample size, n, is
large and probability, p, is small.

The number of counts of radiation that occur in
a particular time interval; the release of synaptic
transmitter from nerve cells; the number of
artillery shells falling within a fixed radius; the
occurrence of major storm events in a month;
number of leaks in average length of pipe.

Triangular
Figure ©)

The PDF is shaped like a triangle, with
parameters representing plausible bounds and a
most likely value (i.e., mode).  This is a
“rough” probability model that generally
describes a random variable based on limited
information rather than mechanistic basis.

Variability in shower droplet diameter. 
Uncertainty in the mean air exchange rate in a
shower.

Uniform
Figure (d)

The PDF is shaped like a rectangle, with
parameters representing plausible bounds. 
This is a “rough” probability model that
generally describes a random variable based on
limited information rather than a mechanistic
basis. 

Variability in the air ventilation rate in a house.

Weibull
Figure (f)

Originated in reliability and (product) life
testing as a model for time to failure or life
length of a component when the failure rate
changes with time.  A very flexible model
taking a wide range of shapes.  If the failure
rate is constant with time, the Weibull reduces
to the exponential distribution.

Examples for exponential and gamma would
also be appropriate for Weibull.
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B. 5.2 EMPIRICAL DISTRIBUTION FUNCTIONS (EDFS)

In some cases, an empirical distribution function (EDF) may be preferred over fitting the data set
to a hypothesized distribution.  EDFs, also called empirical cumulative distribution functions (ECDF),
provide a way to use the data itself to define the distribution of the relevant variable.  Briefly, an EDF for
a random variable is described by a step function based on the frequency distribution of observed values. 
An EDF for a continuous random variable may be linearized by interpolating between levels of the
various bins in a frequency distribution.  The CDF for a linearized EDF appears as a line, rather than
steps.  Example B-3 at the end of this Appendix illustrates an EDF, linearized EDF, and beta distribution
("1=0.63, "2=2.85, rescaled to min=0, max=364) fit to percentile data for soil ingestion rates in children
(Stanek and Calabrese, 1995).  A plausible range (i.e., minimum and maximum values) was imposed on
the data set for this example. 

EDFs provide a complete representation
of the data with no loss of information.  They
do not depend on the assumptions associated
with estimating parameters for theoretical
probability models.  EDFs are designed to
provide direct information about the shape of
the distribution, which reveals skewness,
multimodality, and other features of the data
set.  However, EDFs may not adequately
represent the tails of a distribution due to
limitations in data acquisition.  In the simplest
case, an EDF is constrained to the extremes of
the data set.  This may be an unreasonable
restriction if limiting the EDF to the smallest
and largest sample values is likely to greatly
underestimate the distributional tails.  If this is an important source of uncertainty, the risk assessor may
choose to extend the tails of the distribution to plausible bounds or to describe the tails with another
distribution (see Exhibit B-4).  For example, an exponential distribution may be used to extend the tails
based on the last 5% of the data.  This method is based on extreme value theory, and the observation that
extreme values for many continuous, unbounded distributions follow an exponential distribution (Bratley
et al., 1987).  As with other probability models, uncertainty in the plausible bounds of an EDF may be
reduced by obtaining additional information.

Advantages and disadvantages of using EDFs in PRA are discussed in detail in the Report of the
Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA, 1999a).

B.5.3 GRAPHICAL METHODS FOR SELECTING PROBABILITY DISTRIBUTIONS

Graphical methods can provide valuable insights and generally should be used in conjunction
with exploratory data analysis.  Examples of graphical methods are frequency distributions (i.e.,
histograms), stem-and-leaf plots, dot plots, line plots for discrete distributions, box-and-whisker plots,
and scatter plots (Tukey, 1977; Conover, 1980; Morgan and Henrion, 1990).

L Graphical methods are invaluable for exploring a data set to understand the
characteristics of the underlying population.

EXHIBIT B-4

VARIATIONS OF THE EDF

Linearized - Linearly interpolates between two
observations, yielding a linearized cumulative
distribution pattern.

Extended - In addition to linearizing (see above),
adds lower and upper bounds based on expert
judgment.

Mixed Exponential - Adds an exponential upper
and/or lower tail to the EDF.
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Together with statistical summaries, graphical data summaries can reveal important characteristics of a
data set, including skewness (asymmetry), number of peaks (multi-modality), behavior in the tails, and
data outliers.

Frequency Distribution or Histogram

The frequency distribution, or histogram, is a graphical approximation of the empirical PDF. 
Frequency distributions can be plotted on both linear and log scales.  The general strategy for selecting
the number of bins to partition the data is to avoid too much smoothing and too much jaggedness. 
Equation B-1 (U.S. EPA, 1999a) provides a starting point for estimating the number of bins based on the
sample size (n).

Probability Plotting

Another method that may be used to visualize distributions and estimate parameters is probability
plotting, also referred to as linear least squares regression or regression on ordered statistics.  This
technique involves finding a probability and data scale that plots the CDF of a hypothesized distribution
as a straight line.  The corresponding linearity of the CDF for the sample data provides a measure of the
GoF of the hypothesized distribution.  The general approach involves sorting the sample data in
ascending order and converting the ranks to percentiles.  The percentile value for the ith rank is calculated
according to Gilbert (1987) as:

An alternative formula is provided by Ott (1995):

Plotting positions given by Equations B-2 and B-3 are special cases of the more general formula given by
Equation B-4 (Helsel and Hirsch, 1992):

where a is a constant that varies from 0 (Equation B-3) to 0.5 (Equation B-2).

The percentiles are used to calculate the z-scores, which represent the number of standard
deviations away from the mean that a particular datum lies assuming the data are normally distributed. 
For normal distributions, the data are plotted against the z-scores; for lognormal distributions, the data
are log-transformed and plotted against the z-scores.  In both cases, parameters of the distribution can be
estimated from the least-squares regression line.  When the hypothesized distribution is a poor fit to the
data, p-plots can yield misleadingly low estimates of the standard deviation (Cullen and Frey, 1999). 
Both Gilbert (1987) and Ott (1995) provide excellent descriptions of the use of probability plotting to
derive parameter estimates for a given distribution.  Probability plotting techniques with best-fit lines
have been used to estimate parameters for a wide variety of distributions, including beta, Weibull, and
gamma.
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Cullen and Frey (1999) point out that probability plotting may not be a primary choice for
selecting a fitting distributions because the method violates an important assumption of least squares
regression—independence of the observations (see Appendix A, Exhibit A-5).  This is because the rank-
ordered data are no longer independent.  Nevertheless, this approach may yield good results when the fit
is good and the choice of distributions is somewhat subjective.

B.5.4 PARAMETER ESTIMATION METHODS

As a rule, there are often a number of different methods available for estimating a given
parameter.  The most appropriate method to apply may require judgment, depending on the relative
difficulty in applying a method for a particular parameter, as well as the desired statistical properties of
the method.  The following simple example provides a useful analogy.  Suppose that the parameter of
interest, A, is the total area of an approximately square exposure unit.  If the exposure unit is a perfect
square, and the length of one side (L1) is known, the area would be equal to L1

2 (i.e., for a square, A=Li
2). 

Suppose L is unknown, but two independent measurements, X1 and X2, are available to estimate the
length (see Exhibit B-5).  If it is assumed that the random variable, L, has a probability distribution with
mean :, then the area of the square piece of property is A=:2.  What is a reasonable estimate of the area

(i.e., ) based on X1 and X2?  Three plausible methods for calculating are given below.> >A = µ 2
>µ 2

Because these three estimators will, as a rule, give different answers, it may be useful to set criteria for
selecting which one gives the “best” answer.  Some of the statistical criteria that are used for this purpose
are consistency, efficiency, robustness, sufficiency, and unbiasedness (see Exhibit B-6).  It turns out, each
method is relatively easy to implement, but the third method is preferred because it is a more efficient
estimator.

In many cases, particularly if a model is complex, potential estimators of the unknown
parameters are not readily apparent.  To assist in developing estimators, several general methods have
been developed.  Exhibit B-7 lists some of the more common parameter estimation methods. 

Perhaps the simplest method is the method of matching moments (MoMM), also called the
method of moments.  MoMM is appropriately named, as it involves expressing the unknown parameters
in terms of population moments and then “matching”, or equating the sample moments to the population

EXHIBIT B-5

ESTIMATING THE AREA OF A
HYPOTHETICAL EXPOSURE UNIT

Exposure
Unit

x1

x2
Exposure

Unit

x1

x2
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n

moments.  For example, the sample mean ( )x
and standard deviation (s) are estimators for the
corresponding population parameters (: and F). 

Maximum Likelihood Estimation (MLE)
is a commonly applied method, that is often
thought of as a parameter estimate for which the
observed data are most “likely”.  The likelihood
function is defined for independent continuous
random variables as follows:

L(θ1, θ2,...θk) = ΠΠΠΠ f(x1|θ1, θ2, ..., θk) 
     I=1

The likelihood function is evaluated based on the
product of the PDF for each value of x.  The
parameters of the probability model, (θk), are
chosen to maximize the likelihood function value
and thereby are most likely to produce the
sample data set (Cullen and Frey, 1999).

It has also been demonstrated that MLE
yields estimators that generally have good
properties when evaluated by the criteria listed
above.  In some cases (e.g., for smaller sample
sizes), these estimators are not unbiased;
however, this can often be accounted for by “adjusting” the estimator.  A familiar example of this
adjustment is in estimation of the variance of a
normal distribution.  The MLE for the variance is
biased by a factor of ((n-1)/n), but this is easily
corrected by multiplying the MLE by (n/(–1)). 
For some distributions, calculations of the MLE
are straightforward.  For example, MLE for
parameters of a normal distribution are given by
the mean and standard deviation of the sample
data, the same as MoMM.  MLE for parameters of
a lognormal distribution are given by the mean
and standard deviation of the log-transformed
data, which is different from MoMM.  In general,
MLE calculations are complex, and commercial
software such as @Risk and Crystal Ball® may be
used.  A more detailed discussion of the derivation
and properties of MoMM and MLE can be found in the statistics literature (e.g., Chapter 5 of Mood and
Graybill, 1963; Chapter 9 of Mendenhall and Scheaffer, 1973; Section 6.5 of Law and Kelton, 1991;
Section 5.6 of Cullen and Frey, 1999).  

EXHIBIT B-7

PARAMETER ESTIMATION METHODS

• Method of Matching Moments

• Maximum Likelihood

• Minimum Chi-Square

• Weighted Least-Squares

EXHIBIT B-6

CRITERIA FOR EVALUATING PARAMETER
ESTIMATION METHODS*

Consistency A consistent estimator converges to
the “true” value of the parameter as
the number of samples increases.

Efficiency An efficient estimator has minimal
variance in the sampling distribution
of the estimate.

Robustness A robust estimator is one that works
well even if there are departures from
the assumed underlying distribution.

Sufficiency A sufficient estimator is one that
makes maximum use of information
contained in a data set.

Unbiasedness An unbiased estimator yields an
average value of the parameter
estimate that is equal to that of the
population value.

*Source: Cullen and Frey, 1999



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment 
Appendix B  ~ December 31, 2001

Page B-26

B.5.5 DEALING WITH CORRELATIONS AMONG VARIABLES OR PARAMETERS

Correlations between exposure variables or between parameters of the probability distribution
may be important components of a probabilistic model.  Correlation is a measure of association between
two quantitative random variables.  Two random variables may either be positively or negatively
correlated.  A positive correlation exists between two variables if the value of X1 increases as the value
of X2 increases.  For example, higher hand dust lead levels have been associated with higher pediatric
blood lead levels (Charney et al., 1980).  A negative correlation exists between two variables if the value
of X1 increases as the value of X2 decreases.  For example, studies suggest the ingestion of soil and dust
particles increases as particle size decreases (Calabrese et al., 1996).

A first step in identifying correlations is to assess the possible physical and statistical
relationships that exist between variables.  In an ecological risk assessment (ERA), for example, the
largest surf scoter (diving duck) does not consume the least amount of food, nor does the smallest surf
scoter consume the greatest amount of food.  Random sampling of body weight and ingestion rate as
separate parameters, however, allows for these two possibilities.  Neglecting a correlation between two
variables may restrict (underestimate) the tails of the ecological Hazard Quotient (HQ) for each chemical
of concern (COC), which are frequently the areas of the distribution of most interest. 

The degree to which correlations affect the output of a risk model depends on: (1) the strength of
correlations between the two variables, and (2) the contribution of the correlated variables to overall
variance in the output (Cullen and Frey, 1999).  Therefore, it is useful to conduct a preliminary
sensitivity analysis to assess the impact of alternative correlation assumptions on the model output.  If the
impact is significant, correlations should be identified and accounted for in the PRA.

There are several approaches to account for dependencies in MCA including: (1) modifying the
model to include the correlation; and (2) simulating dependence between variables for sample generation
(Cullen and Frey, 1999).  Modifying the model is preferred as simulation techniques cannot capture the
full complexity between model inputs.  However, when this is not possible, dependencies between
variables can be simulated and approximated by correlation coefficients and bivariate normal
distributions.

Correlation coefficients are a numerical measure of the strength and direction of the relationship
between two variables.  Sample correlation coefficients measure the linear relationship between
variables.  However, if two variables are from different probability distributions, it is unlikely that they
are linearly related.  Consequently, simulation software programs such as Crystal Ball® and @Risk can
be used to calculate and employ the nonparametric statistic, Spearman’s Rank Correlation Coefficients
(Rho) in simulating correlation between inputs.  Rank Correlation Coefficients measure the linear
dependence not of the data values themselves, but of the rank value of the data.  The ranks indicate
relative positions in an ordered series, not the quantitative differences between the positions.  The
disadvantage of losing information by using the rank values (rather than the actual values) is offset by the
ability to correlate random variables from different distribution types (See Appendix A).

Exhibit B-8 gives an example of a straightforward approach to specifying a rank correlation
between two input variables in a one-dimensional Monte Carlo analysis (1-D MCA) for variability.  A
range of correlations is explored as a form of uncertainty analysis on the distribution of intakes given a
fish advisory of 7.0 :g/day for a chemical.
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EXHIBIT B-8

CORRELATION OF INPUT VARIABLES FOR 1-D MCA OF VARIABILITY

Intake Equation Intake = (CF x IR x FI x EF x ED)/(BW x AT)

Variables Description and Units Units Point Estimate or PDFv

CF concentration in fish ug/kg 25

IR fish ingestion rate kg/meal lognormal (0.16, 0.07)1

FI fraction ingestion from source unitless 1.0

EF exposure frequency meals/yr lognormal (35.5, 25.0)1

ED exposure duration years 30

BW body weight kg 70

AT averaging time days 10950

     1Lognormal PDF parameters: arithmetic mean, standard deviation

< Correlation between IR and EF is suggested by Burger et al. (1999) study of 250 anglers on the Savannah
River, South Carolina.  Moderate correlation (Kendall’s tau=0.17, p=0.04)

< Uncertainty Analysis: 1-D MCA simulations of variability correlating IR and EF using Crystal Ball® 2000
(5,000 iterations, Latin Hypercube sampling).  Spearman rank correlations: 0.10, 0.50, 0.90

Statistics of PDFv for Intake (ug/day) compared to Fish Advisory of 7.0 ug/day

Rank Correlation (r) 0.10 0.50 0.90

Intake Statistics (ug/day)

mean 1.6 1.8 2.0

50th percentile 1.1 1.1 1.1

95th percentile 4.4 5.4 6.5

97.5th percentile 5.7 7.0 9.0

< For this example, only IR and EF are characterized by PDFs.  They contribute approximately equally to the
distribution of intakes.  Positive rank correlations have little effect on the median (50th percentile) of the
output distribution, but tend to widen the tails of the distribution.  Increasing the correlation from 0.10 to
0.90 increases the 90th percentile from 4.4 to 6.5 ug/day, and the 97.5th percentile from 5.7 to 9.0 ug/day.  

< If the fish advisory is 7.0 ug/day, uncertainty in the correlation coefficient may have important
consequences for the risk management decision.
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Correlations may also be specified for parameters of a probability distribution.  This is an
important concept when designing a two-dimensional Monte Carlo analysis (2-D MCA) in which
parameters of the same PDFv might be otherwise be described by independent PDFu’s.  A common
approach for correlating two parameters is to specify a bivariate normal distribution (Nelsen, 1986, 1987;
Brainard and Burmaster, 1992).  A bivariate normal distribution allows for the distribution of one
variable to be sampled conditional on the other.  This is a special case of a joint distribution in which
both x and y are random variables and normally distributed (as the conditional distribution of x or of y is
always normal) (Wonnacott and Wonnacott, 1981).  Example B-4 further explains bivariate normal
distributions and demonstrates this approach applied to coefficients of a simple linear regression model
that relates contaminant concentrations in soil and dust.

The results of correlation analysis should be interpreted with caution.  Two variables may be
associated due to: (1) a dependency between the two variables; (2) chance (two independent variables
appear dependent due to chance in the sampling procedure); and (3) variables not included in the analysis
(lurking variables) are affecting the two variables being analyzed.  Likewise, a low correlation measure
does not necessarily mean the two variables are independent.  As a lurking variable may cause the
appearance of an association between the two independent variables, it may also mask the association
between two dependent variables.

 L Correlation describes a degree of mathematical association, not a causal
relationship between the two variables.  

Efforts to extrapolate or predict correlations outside the range of observed values should also be
done with caution.  For example, there may be a strong linear relationship between age and height in
children; however, it would be inappropriate to apply this correlation to adults.  Additional caution is
needed when correlating more than two factors at a time.  In general, because of the complexity of
specifying a valid covariance matrix when correlating more than two factors at a time, risk assessors may
need to consult a statistician to avoid generating misleading risk estimates.

B.5.6 CENSORED DATA

In order to define the exposure point concentration, estimates of summary statistics
representative of the entire distribution of data are needed (Helsel and Hirsch, 1992).  Censored data
complicate the process of selecting and fitting PDFs and estimating parameter estimates.  A censored
data set is a data set for which measurements above or below a certain threshold are not available.  Left
censored data occurs frequently at Superfund sites, where samples for a number of chemicals are often
below the reporting limit.  A censored datum (often denoted by ND) commonly represents a value of half
of the laboratory reporting limit. 

Three general methods for estimating summary statistics for left censored data sets include:
(1) simple substitution; (2) distributional methods; and (3) robust methods (Helsel and Hirsch, 1992). 
These methods may be evaluated based on the root mean squared error (RMSE) estimate, a measure of 
the difference between the sample statistic (e.g., the sample mean, ) and the true population parameterx
(e.g., population mean, µ).  
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Methods which yield estimates closer to the true parameter value have lower bias, higher precision, and
lower RMSEs. 

Simple Substitution Methods

Simple substitution methods entail substituting values equal to or lower than the reporting limit
in the data set.  These surrogate values are then included in the calculation of the summary statistics and
in determining the distributional shape of the data set.  Although this method is frequently used, it is
important to understand its limitations; depending on the surrogate value used (e.g., half the reporting
limit) the simple substitution method may yield biased parameter estimates (e.g., low estimates of the
mean) and may yield misleading distributional shapes.  Studies such as those reported by Gilliom and
Helsel (1986) have determined, in terms of the RMSE, that simple substitution methods perform more
poorly than the distributional and robust methods described below. 

Distributional Methods

With distributional methods, the entire data set is assumed to follow a theoretical distribution
(e.g., normal distribution).  Assuming a theoretical distribution, MLE and probability plotting (p-plot)
methods provide summary statistics that best match the reported values of the data and the percentage of
samples below the threshold value.  If the data fit the theoretical distribution exactly, or if the sample size
is large, both MLE and p-plots are unbiased methods.  Often, however, the sample size is small and the
distribution deviates from a theoretical distribution.  In this case, the MLE and p-plot methods may yield
biased and imprecise methods (Hesel and Hirsch, 1992). 

Robust Methods

With robust methods, a theoretical distribution is needed.  A theoretical distribution is fit to the
data above the detection limit by MLE or p-plot methods.  Based on this assumed PDF, the value of the
data points below the detection limit are extrapolated and used in the summary statistics calculation.
Unlike the simple substitution method, these extrapolated values are not estimates for the data points;
rather, they are only used jointly to calculate summary statistics (Hesel and Hirsch, 1992).  The method is
considered robust as it uses the actual values of the sample data, rather than the distribution above the
detection limit. 
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B.5.7 TRUNCATION

Truncation refers to imposing a minimum and/or maximum value on a probability distribution. 
The main purpose of truncation is to constrain the sample space to a set of “plausible values”.  For
example, a probability distribution for adult body weight might be truncated at a minimum value of 30 kg
and a maximum value of 180 kg in order to avoid the occasional selection of an unlikely value (e.g., 5 or
500 kg).  Given the subjectiveness involved in selecting truncation limits, such choices should clearly be
made with caution, and involvement of stakeholders who may be aware of site-specific circumstances. 
For example, there may well be individuals who weigh more than 180 kg and less than 30 kg.  The
purpose for truncating the tails of a distribution is to confine each risk estimate of a Monte Carlo
simulation to a combination of plausible input values.  The advantage of truncating unbounded
probability distributions in PRA is that central tendency and high-end risk estimates will not be biased by
unrealistic values.  The disadvantage is that the original parameter estimates of the nontruncated
distribution are altered by constraining the sample space.  The bias in the parameter estimates increases
as the interval between the minimum and maximum truncation limit is reduced.  For example, a normal
distribution with an arithmetic mean of 100 may be fit to a data set; imposing a truncation limit of
300 may result in a truncated normal distribution with an arithmetic mean of 85.  The relationship
between the truncated and nontruncated parameter estimates can be determined analytically (Johnson et
al., 1995) or approximated using Monte Carlo simulations under both truncated and nontruncated
scenarios.

Table B-3.  Theoretical bounds and parameter values for selected distributions.

Probability Distribution Parameters1 Theoretical Bounds

Normal (:, F) (-4, + 4)

Lognormal (:, F) [0, + 4)

Weibull (", $) [0, + 4)

Exponential ($) [0, + 4)

Gamma (", $) [0, + 4)

Beta ("1, "2, a, b) [a, b]

Uniform (a, b) [a, b]

Triangular (a, m, b) [a, b]

Empirical ( bounded EDF) (a, b, {x}, {p}) [a, b]

1a=minimum, b=maximum, :=mean, F=standard deviation, m=mode, 
"=shape parameter, $=scale parameter, x=value, p=probability

Truncation is typically considered when using unbounded probability distributions (e.g., normal,
lognormal, gamma, Weibull) to characterize variability.  Table B-3 gives the theoretical bounds for
selected probability distributions that may be more commonly used in PRA.  Truncating the minimum
value may also be appropriate for distributions whose minimum is defined as zero (e.g., lognormal,
gamma, Weibull).  Truncation is generally less important when a PDF is used to characterize uncertainty
in a parameter estimate (e.g., arithmetic mean), since distributions for uncertainty are often bounded by
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definition (e.g., triangular, uniform).  Bounded continuous distributions, such as the beta distribution or
empirical distribution (see Section B.5.2) are not subject to the parameter bias of truncation, although
plausible minimum and maximum values must still be identified. 

Identifying appropriate truncation limits that reflect “plausible bounds” for an exposure variable
will often require judgment.  Given that most data sets represent statistical samples of the target
population, it is unlikely that the minimum and maximum observed values represent the true minimum
and maximum values for the population.  However, there may be physiological or physical factors that
can aid in setting plausible truncation limits.  For example, the maximum bioavailability of chemicals in
the gastrointestinal (GI) tract is 100%.  Similarly, the solubility of chemicals in aquatic environments
(accounting for effects of temperature) will generally be less than the chemical solubility in water free of
particulates.

In general, sensitivity analysis can be used to determine if truncation limits are an important
source of parameter uncertainty in risk estimates.  For exposure variables in the numerator of the risk
equation, the maximum truncation limit is of greatest concern.  For exposure variables in the
denominator of the risk equation, the minimum truncation limit is of greatest concern.  Details regarding
the fit of the tails of the probability distribution and the effect of truncation on the parameter estimates
should generally be included in the workplan.

B.6.0 ASSESSING QUALITY OF THE FIT

The quality of the fit of a distribution may be evaluated in several ways.  Standard statistical
approaches are available to test the fit of a theoretical distribution to a data set (i.e., GoF tests).  In
addition, alternative choices for distribution shapes and plausible bounds might be explored as a form of
sensitivity analysis.  Together with graphical exploration (Section B.5.3), this information may be useful
when deciding whether or not to incorporate a specific type of distribution for an exposure variable into a
PRA.  

L GoF tests are one tool among several to assess the quality of a distribution.

Although GoF testing is a necessary part of distribution fitting, and tests are readily available with
commercial software, it is less important than mechanistic considerations or graphical data exploration
for choosing a candidate distribution.  Examples of GoF tests are discussed below, and cautions
regarding GoF are outlined in Section B.6.3.

B.6.1 WHAT IS A GOODNESS-OF-FIT TEST?

Goodness-of-fit (GoF) tests are formal statistical tests of the hypothesis that the data represent an
independent sample from an assumed distribution.  These tests involve a comparison between the actual
data and the theoretical distribution under consideration. 

In statistical hypothesis testing the null hypothesis (H0) is assumed to be true unless it can be
proven otherwise.  The “evidence” upon which we base a decision to reject or not to reject H0 is a
random sample.  Typically, we seek to reject H0 in favor of Ha.  For example, with the two sample t-test,
the null hypothesis is that the means of two populations are equal (not different) and the alternative is
that they are different.  This is expressed as:  
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Most often, the hypothesis test is used to show that the means are not equal (i.e., reject H0 in
favor of Ha) in order to state that there is a significant difference between the two populations at a
specified significance level (e.g., "=0.05).  Thus, the hypothesis test is often referred to as a significance
test.

The p-value in a statistical test is calculated from a sample and represents the probability of
obtaining a value of the test statistic as extreme or more extreme as the one observed if H0 is in fact true. 
When the p-value is small it means either the null hypothesis is not true, or that we have witnessed an
unusual or rare event (by chance we drew an unusual sample that resulted in the extreme value of the test
statistic).  Often a value of 0.05 or 0.01 is designated as a cutoff, or significance level ".  If the p-value is
(e.g., p < 0.05), the null hypothesis is rejected in favor of the alternative, and we state that the test result
is statistically significant at level ".  This does not mean that we have proven Ha is true.  Rather, we are
saying that based on our sample results, it is unlikely that H0 is true.  

In a GoF test, the hypothesis test is set up the same way as a “traditional” hypothesis test, but the
outcome is viewed a little differently.  In GoF tests, we generally seek to fail to reject H0 because the null
hypothesis states that the data were obtained from a population described by the specified distribution
(F0).  The alternative hypothesis is that the data were obtained from a population described by a different
distribution.  In most applications of GoF techniques, the alternative hypothesis is composite—it gives
little or no information on the distribution of the data, and simply states that H0 is false (d’Agostino and
Stephens, 1986).  This can be expressed as:

where F0 is a specific continuous distribution function, such as the CDF for a normal distribution.

L GoF tests do not prove that the population is described by the specified
distribution, but rather that this assumption could not be rejected.  

In general, p-values provide one metric of evaluating the fit of the distribution.  For example, a p-value of
0.06 indicates that the null hypothesis (i.e., the assumption of a specified distribution) cannot be rejected
at "=0.05.  Larger p-values indicate a better fit and stronger evidence that the distribution specified by
the null hypothesis may be appropriate.  This guidance does not recommend an arbitrary cutoff for the
p-value.  A risk assessor performing a GoF test generally should report the p-value and whether the fit is
considered “good” or “poor”.  
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B.6.2 WHAT ARE SOME COMMON GOODNESS-OF-FIT TECHNIQUES?

The following GoF tests can also be found in most general statistical and spreadsheet software. 
Both Crystal Ball® and @Risk software present the results of chi-square, K-S, and Anderson-Darling
tests in their fitting routines. 

Shapiro-Wilk Test

The most widely used GoF test in risk assessment is the Shapiro-Wilk test for normality (Gilbert,
1987).  This simple hypothesis test can determine whether or not a small data set (n # 50) is normally
distributed.  The test can also be run on log-transformed data to assess whether the data are lognormally
distributed.  D'Agostino's test may be used for samples sizes larger than those accommodated by the
Shapiro-Wilk test (i.e., n > 50) (d’Agostino and Stephens, 1986).  In addition, Royston (1982) developed
an extension of the Shapiro-Wilk test for n as large as 2000 (Gilbert, 1987).  

Probability Plot Correlation Coefficient Test

The correlation coefficient r (or the coefficient of determination, r2) between the data and the
z-scores of a normal probability plot (Filliben, 1975; Helsel and Hirsch, 1992) is similar to the W statistic
of the Shapiro-Wilk test.  A detailed comparison of the Shapiro-Wilk test and the product correlation
coefficient test is given by Filliben (1975) and d’Agostino and Stephens (1986).  Helsel and Hirsch
(1992) summarize critical r* values derived by Looney and Gulledge (1985) for the probability plot
correlation coefficient test.

Chi-Square Test

The chi-square test is a general test that may be used to test any distribution (continuous or
discrete), and for data that are ordinal (e.g., categories such as high/medium/low).  Chi-square is a
measure of the normalized difference between the square of the observed and expected frequencies.  For
example, by constructing a frequency distribution of the data with k adjacent bins, j=1...k, the number of
data points in the jth bin can be compared with the expected number of data points according to the
hypothesized distribution.  Note that in the case of continuous, unbounded distributions (e.g., normal),
the first and last intervals may include [- 4, a1] or [ak, + 4] (Law and Kelton, 1991).  The chi-square test
is very sensitive to the chosen number and interval width of bins—different conclusions can be reached
depending on how the intervals are specified.  Strategies for selecting bins (e.g., setting interval widths
such that there are no fewer than 5 data points expected per bin) are given in the statistical literature
(d’Agostino and Stephens, 1986; Law and Kelton, 1991).  The test statistic is compared with a value of
the chi-square distribution with (k - r - 1) degrees of freedom, where k is the number of sample values
and r is the number of parameters of the hypothesized distribution.  As described in Section B.6.1, in
general, higher p-values suggest better fits.

Kolmogorov-Smirnov (K-S) Test

The K-S test is a nonparametric test that compares the maximum absolute difference between the
step-wise empirical CDF and the theoretical CDF.  Because the maximum discrepancy is compared with
the test statistic, K-S is sometimes referred to as a supremum test (Cullen and Frey, 1999).  In general,
lower values of the test statistic indicate a closer fit.  The K-S test is most sensitive around the median of
a distribution, and, hence, it is of little use for regulatory purposes when the tails of distributions are most
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generally of concern (U. S. EPA, 1999a).  Although it does not require grouping data into bins like the
chi-square test, critical values for the K-S test depend on whether or not the parameters of the
hypothesized distribution are estimated from the data set (Gilbert, 1987; Law and Kelton, 1991).  The
Lilliefors test was developed to surmount this problem when the hypothesized distribution is normal or
lognormal (Gilbert, 1987).

Anderson Darling Test

The Anderson-Darling test assesses GoF in the tails (rather than the mid-ranges) of a PDF using
a weighted average of the squared differences between the observed cumulative densities.  The
Anderson-Darling test is sometimes referred to as the quadratic test (Cullen and Frey, 1999).  The test
statistic should be modified based on sample size prior to comparison with the critical value.  Like the
K-S test, in general, lower values of the test statistic indicate a closer fit (i.e., if the adjusted test statistic
is greater than the modified critical value for a specified ", the hypothesized distribution is rejected). 
The Anderson-Darling test may be particularly useful because it places more emphasis on fitting the tails
of the distribution.

B.6.3 CAUTIONS REGARDING GOODNESS-OF-FIT TESTS

There are many statistical software programs that will run GoF tests against a long list of
candidate distributions.  It is tempting to use the computer to make the choice of distribution based on a
test statistic.  However, GoF tests have low statistical power and often provide acceptable fits to multiple
distributions.  Thus, GoF tests are better used for rejecting poorly fitting distributions than for ranking
good fits.  In addition, for many distributions, GoF statistics lack critical values when the parameters are
unknown (i.e., estimated from the data).  In practice, this limitation is often discounted and the critical
values are interpreted as a semi-quantitative measure of the fit.  It is most appropriate to form an idea of
the candidate distributions based on some well reasoned assumptions about the nature of the process that
led to the distribution, and then to apply a GoF test to ascertain the fit (U.S. EPA, 1999a).  Whenever
possible, mechanistic and process (i.e., phenomenologic) considerations should inform the risk assessor's
choice of a particular distribution rather than the results of a comparison of GoF tests (Ott, 1995).  In
addition, the value of graphical evaluations of the fit cannot be overstated.

B.6.4 ACCURACY OF THE TAILS OF THE DISTRIBUTION

The tails of a distribution (e.g., < 5th and > 95th percentiles) for an input variable are often of
greatest interest when characterizing variability in risk.  Distributions fit to data may not characterize the
tails of the distribution in a way that represents the target population.  In general, the importance of
uncertainty in the fit of the tails of particular distributions should be determined on a site-specific basis. 
For exposure variables in the numerator of the risk equation, the upper tail is of greatest concern.  For
exposure variables in the denominator of the risk equation, the lower tail is of greatest concern.  

The tails of the input PDFs generally have a significant influence on the tails of the risk
distribution, especially for those variables that are ranked highest in a sensitivity analysis.  Different
distributions may share the same mean and variance, but assume very different shapes.  Experiments with
Monte Carlo simulations have demonstrated that the shape of the input PDFs may have a minimal effect
on the risk estimates in the tails of the probability distribution when the mean and variance of the input
PDFs are held constant (Hoffman and Hammonds, 1992; Finley and Paustenbach, 1994).  Nevertheless, it
is generally a good practice in PRA to demonstrate that alternative choices of PDFs do not have a
significant effect on percentiles in the RME risk range.
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A common question when developing and evaluating Monte Carlo models is, “How many
iterations is enough?”.  Since Monte Carlo sampling is approximately random, no two simulations will
yield the same results (unless the same starting point, or seed, of the random number generator is used). 
A rule of thumb is that the stability of the output distribution improves with increasing numbers of
iterations, although there will always remain some stochastic variability.  The stability is generally better
at the central tendency region of the output distribution than at the tails; therefore, more iterations may be
needed when the risk management decision is associated with the higher percentiles
(e.g., > 95th percentile).  Risk assessors are encouraged to run multiple simulations (with the same inputs)
using different numbers of iterations in order to evaluate the stability of the risk estimate of concern.  The
results of such an exercise should generally be reported to the Agency when submitting a PRA for
review.  Note that while the speed of modern computers has essentially eliminated the issue for
1-D MCA (e.g., 10,000 iterations of most 1-D MCA models can be run in less than 1 minute), it may still
be an important issue for more complex modeling approaches such as Microexposure Event analysis
(MEE) and 2-D MCA (see Appendix D).

B.7.0 SELECTING PROBABILITY DISTRIBUTIONS BASED ON STATE OF KNOWLEDGE

Table B-4 summarizes preliminary strategies for proceeding with a PRA based on the amount of
available information.  Recommended starting points for each of the three steps in the general process are
provided.  This table provides guidance on candidate distributions that are consistent with the available
information, however, it is not intended to discourage the use or exploration of alternative choices.

L Table B-4 provides recommended preliminary strategies, not steadfast rules. 
As an analyst works through the PRA, alternative distributions, estimation
methods, consideration of mechanism, and GoF tests may better guide the
selection process.  

Case 1 represents the best scenario, in which the analyst has access to the raw data and a
sufficiently large sample size (or > 6 percentiles).  In this case, the analyst has a variety of choices for
distribution fitting and estimating parameters.  However, frequently raw data are inaccessible to the
analyst.  Cases 2 and 3 have limited information available (i.e., mean and upper percentile) and,
therefore,  have a narrower set of starting points.  Case 4 is the most extreme scenario of data availability
requiring expert judgment on selecting and fitting distributions.
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Table B-4.  Strategies for conducting PRA based on available information.  Preferred methods in Case 1 (most
information) are identified by an asterisk (*).

Evaluation Step Case 1 Case 2 Case 3 Case 4

                                  Decreasing Information

Data
Availability

raw data of sufficiently
large sample size
                 or
six or more percentiles

three to five statistics two statistics one statistic

Selection of
Distribution Type

Nonnegative Continuous
any in this category

Bounded
beta, Johnson’s SB

Nonnegative Continuous
lognormal, gamma, Weibull

Bounded
beta, Johnson’s SB

case-by-case
basis using
expert judgment

Selection of
Parameter
Estimation /
Fitting Method

maximum likelihood*
regression methods
matching moments

minimize average
absolute percent error
(MAAPE) for 
available statistics

exact agreement
between 2-parameter
PDF and available
statistics

Assessment of 
Quality of Fit

Graphical Assessment
   P-log Q plot*, P-Q plot*

residual % error plot*
P-P plot, Q-Q plot 

GoF Tests
Anderson-Darling*
K-S
Chi-square

Graphical Assessment
P-log Q plot, P-Q plot

GoF Test
Chi-square,

   Estimate p-value for      
   MAAPE using 
   parametric bootstrap (if 
   sample size is known)

Graphical Assessment
judgment based on
comparative analysis of
PDFs and CDFs

Estimation of
Parameter
Uncertainty

Large Sample
asymptotic normality 

   assumption
Medium Sample

nonparametric bootstrap 
Small Sample

parametric bootstrap

Parametric bootstrap
generate random samples using the fitted distribution
(if sample size is known)
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EXAMPLES OF FITTING DISTRIBUTIONS USING 
GRAPHICAL METHODS, GOODNESS-OF-FIT, AND PARAMETER ESTIMATION

Example B-1.  Empirical Distribution Function (EDF) for Soil Ingestion Rates

This hypothetical example illustrates how graphical methods can be used to select probability
distributions for variability based on percentile data reported in the literature.  Table B-5 gives the
summary statistics that are reported by Stanek and Calabrese (1995) for average daily soil ingestion rates
among young children.  Three options are explored for selecting a distribution: (1) empirical distribution
function (EDF) represented by a step function; (2) linearized and extended EDF; and (3) continuous
parametric distributions (beta and lognormal).

In order to specify an EDF, a plausible range (minimum and maximum) must be inferred using
judgment.  Exposure factors such as ingestion rate are nonnegative variables (i.e., minimum $0); given
the relatively low value for the 25th percentile (10 mg/day), it is assumed that 0 mg/day is a reasonable
minimum value for this example.  If children with pica for soil are excluded from the population of
concern, the maximum value may be inferred from the relatively shallow slope at the high-end of the
distribution.  That is, the 90th percentile is reported as 186 mg/day while the 99th percentile is 225 mg/day,
an increase of only 39 mg/day; it is assumed that 300 mg/day is a plausible maximum value for this
example.  Commercial software such as Crystal Ball® and @Risk can be used to input EDFs.  Figure B-3
illustrates the basic step-wise EDF represented by the reported percentile values, as well as the
“linearized, extended EDF” (i.e., linear interpolation between reported values and extended lower and
upper tails).  

An alternative to relying on a linear interpolation between the percentile values is to fit a
continuous probability distribution to the reported percentiles.  Since the original data are unavailable,
standard GoF tests for the EDF, such as K-S and Anderson-Darling (d’Agostino and Stephens, 1986),
cannot be applied.  Note that computer software (e.g., Crystal Ball®, @Risk) will provide test statistics
and corresponding p-values, however, these results will (inappropriately) reflect the number of percentile
values reported rather than the sample size of the original data.  Nevertheless, graphical methods may be
employed to assess the adequacy of the fit of various PDFs.  In this example, a beta distribution and
lognormal distribution were fit to the EDF using Crystal Ball®.  Figure B-4 illustrates the selected
statistics for both distributions.  

The beta distribution appears to more closely match the reported percentile values, especially at
the upper tail of the distribution.  The lognormal distribution has an unbounded maximum that, for this
example, results in an extreme overestimate of the 95th and 99th percentiles.  The beta distribution, by
definition, is bounded at 0 and 1, and rescaled in this example to a maximum of 364 mg/day.  This
analysis would support the use of a beta distribution in a Monte Carlo simulation.
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Figure B-3.  Comparison of step-wise EDF and linearized EDF for ingestion rate.  The upper and lower tails of both
distributions are extended to a plausible range of [0, 300] mg/day.

Table B-5.  Selected statistics for reported and fitted distributions for ingestion rate (mg/day).
Summary
Statistic

Reported
Values

Linearized,
Extended EDF

Beta
Distribution1

Lognormal
Distribution2

minimum -- 0 0 0
25th percentile 10 10 13 11
50th percentile 45 45 44 31
75th percentile 88 88 100 86
90th percentile 186 186 165 216
95th percentile 208 208 205 375
99th percentile 225 225 322 3346

maximum -- 300 364 + 4

1Parameters of best-fit beta distribution: "1=0.63, "2=2.85, min=0, max=364.
2Parameters of best-fit lognormal distribution: :=97.6, F=291.8.
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Figure B-4.  Graphical assessment of beta and lognormal distributions fit to the cumulative
distribution reported in the literature (circles).  The beta distribution provides a closer fit to the
percentile values in this example.

.
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Example B-2.  Variability in Lead Concentrations in Quail Breast Tissue

This hypothetical example demonstrates how the combination of graphical methods, GoF tests,
and parameter estimation techniques provides strong evidence for selecting and fitting a lognormal
distribution.  Assume lead concentration in quail is an important variable for a food web model.  Site-
specific data (n=62) are used to estimate inter-individual variability in concentration (Table B-6).  The
histograms in Figure B-5 show lead concentrations in quail breast tissue collected near a settling pond at
a plating works.  Equation B-1 indicated that 7 bins is an appropriate starting point.  The result (top left
panel, Figure B-5) suggests that approximately 80% of the values are < 200 ppm and that the probability
distribution for variability may be described by a nonnegative, right-skewed distribution (e.g.,
exponential, Weibull, lognormal, etc.).  However, additional bins are needed to better understand the
low-end of the distribution.  After increasing the number of bins from 7 to 16 (top right panel,
Figure B-5), graphical evaluation continues to suggest that the distribution is unimodal right skewed. 
The bottom panel of Figure B-5 illustrates that increasing the number of bins would not provide better
resolution of the low-end of the distribution.  For these data, 16 bins appear to provide a reasonable
balance between too much smoothing and too much jaggedness.

Probability plots can be used to visually inspect the GoF of a specified distribution to the data,
and, because the hypothesized distribution yields a straight line, the plots are particularly useful for
evaluating deviations at the tails.  In addition, parameter estimates can be obtained from the regression
lines fit to the data, as discussed below.  For this example, two lognormal probability plots are explored
to evaluate how well the data can be described by a lognormal distribution (Figure B-6).  The top panel
gives the z-score on the abscissa (the “x” axis) and ln[concentration] on the ordinate (the “y” axis), while
the bottom panel gives ln[concentration] on the abscissa and z-score on the ordinate.  Plotting positions
for both methods were calculated using Equation B-2.  Equally plausible parameter estimates can be
obtained from regression lines using either plotting method; however, the approach shown in the top
panel may be easier to implement and interpret.

Despite the relatively large sample size of n=62, GoF tests generally fail to reject lognormality
(i.e., normality of the log-transformed data) in this example.  For the probability plot correlation
coefficient test (Filliben, 1975; Looney and Gulledge, 1985), if r < r* (the value for r at a specified "),
normality is rejected.  For this example, r is 0.988, and r* is between 0.988 and 0.989 for n=62 and
"=0.25; therefore, the p-value for the concentrations is approximately 0.25 and one fails to reject
lognormality at " # 0.25.  D’Agostino’s test yields essentially the same conclusion, with a calculated
Y value of -1.9166.  For this data set, with n=62 and "=0.10, one rejects normality if Y < -2.17 or
Y > 0.997 (see Table 9.7 in d’Agostino and Stephens, 1986); therefore, since Y is within this interval, one
fails to reject the normal distribution.  However, for "=0.20, the rejection criteria is [Y < -1.64 or
Y > 0.812], Y falls outside the low-end of the interval, resulting in a rejection of the normal distribution. 
For this data set, the p-value associated with d’Agostino’s test is slightly less than 0.20 and one fails to
reject normality at  " < 0.20.
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Table B-6.  Sample values of lead concentration (ppm) in quail breast muscle (n=62).
0.45 15.8 36.6 57 91 173 265

2.1 16 40 59.6 94.2 175.6 322
5.4 16.7 40.1 61.4 99 176 490
7.8 21 42.8 62 107 177 663.4
7.8 23 44 64 109 205 703
8.8 24 46 64 111 239 1231

11.8 24.8 47 84.6 149 241 1609
12 29.2 49 86.6 149 245 1634
15 35.5 53 86.8 154 264

Figure B-5.  Histograms of lead concentrations in quail breast muscle (n=62).  The top left panel shows the result
with seven bins; the top right panel shows the result with sixteen bins; the bottom panel uses bin widths of 10 ppm
to highlight the lower tail (< 250 ppm) of the distribution.
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Different methods for obtaining the parameter estimates for the lognormal distribution can be
explored in this example.  For the lognormal distribution, MLE and MoMM simply require calculating
the mean and standard deviation of the log-transformed sample data.  For the lognormal probability plot
method, the parameters can be obtained directly from the least squares regression line expressed as
follows:

such that exponentiating the intercept will give the geometric mean (GM) and exponentiating the slope
will give the geometric standard deviation (GSD) (see Footnote 3 of Table B-7).  Both the MLE and
MoMM estimates will generally match the arithmetic mean of the log-transformed data (i.e., intercept)
determined from lognormal probability plots; however, estimates of the standard deviation (i.e., slope)
will vary (Cullen and Frey, 1999).  In general, the probability plot method yields estimates of the
standard deviation that are less than or equal to that of MoMM and MLE, and the results yield closer
estimates as the correlation coefficient of the probability plot increases (Cullen and Frey, 1999). 
Table B-7 summarizes the parameter estimates using MLE, MoMM, and the two lognormal probability
plotting techniques described above.  The corresponding parameter estimates for the untransformed data
are also presented.  

In this example, the strong linearity of the probability plots (r2=0.98) shown in Figure B-6 is an
indication that a lognormal distribution is a reasonable model for describing variability in concentrations. 
The tails of the distributions fit the data fairly well, although the bottom panel suggests that the
lognormal distribution slightly overestimates the lower tail.  Furthermore, the parameter estimates of the
lognormal distribution using probability plotting closely match the estimates using MLE and MoMM.

Table B-7.  Parameter estimates for lognormal distribution of lead concentrations (ppm).

Parameter Estimation
Method

Log-transformed
Data

Untransformed
Data3

Arithmetic
mean [ ]�µ

Arithmetic
stdev [ ]<σ

Arithmetic
mean [ ]�µ

Arithmetic
stdev [ ]<σ

Maximum Likelihood
Estimate (MLE) 4.175 1.522 207 626

Method of Matching
Moments (MoMM) 4.175 1.522 207 626

Log Probability Plot1 4.175 1.507 203 597
Log Probability Plot2 4.175 1.543 214 670

1Least squares regression line for Figure B-6, top panel.
2Least squares regression line for Figure B-6, bottom panel.
3For a lognormal distribution, the following equations can be used to convert parameters of the normal distribution of
log-transformed data to corresponding parameters of the lognormal distribution of untransformed data.  Assume :* and
F* are the arithmetic mean and standard deviation, respectively, for the normal distribution of log-transformed data.
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Figure B-6.  Lognormal probability plots of lead in quail breast tissue.  Top panel gives z on the abscissa and
ln[concentration] on the ordinate.  Bottom panel gives concentration (log scale) on the abscissa and z on the
ordinate.  Equally plausible parameter estimates can be obtained from regression lines using either plotting
method.  Bottom panel requires an additional step to express the equation that yields parameter estimates
[ln(x)=(slope) z + (y-intercept)], where the slope estimates the standard deviation of ln(x) and the y-intercept
(at z=0) estimates the arithmetic mean of ln(x). 
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Example B-3.  Variability in Meal Sizes Among Consuming Anglers

A creel survey of anglers consuming contaminated fish was performed to estimate variability in
fish meal sizes.  The anglers were asked how many people would eat their fish.  The lengths of the fish
were measured and a regression equation was used to calculate the corresponding weights.  The portion
of the fish mass that is consumed was assumed to be 40% (e.g., fillets).  Results given in Table B-8 are
expressed in units of grams of fish per meal.

The appearance of the histograms (Figure B-7)
suggests that the sample (n=52) may have been selected from
a single distribution.

A normal probability plot of the meal sizes
(Figure B-8) shows a departure from linearity.  Specifically,
there appears to be a “kink” in the probability plot at about
400 g/meal, suggesting that the sample may have been
obtained from two unique distributions.  Both the Filliben 
test and Shapiro-Wilk test indicated a significant departure
from normality at "=0.01.  Parameters may be read directly
from the equations of the regression lines on the right hand
panel of the graph.  MoMM and MLE gave similar estimates.

Figure B-7.  Histograms of meal size (n=52) among consuming anglers.  Left panel uses 7 bins, while the right
panel uses 14 bins.

Table B-8.  Meal size (g/meal) (n=52).
65 182 310 405
74 208 314 415
74 221 318 416
77 226 318 477
90 241 327 531

110 248 332 572
111 253 336 608
133 260 337 745
143 261 350 831
150 281 351 907
163 303 360 1053
163 305 365 1189
174 305 390 1208
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Example B-4.  Bivariate Normal Distributions

This example introduces the bivariate
normal distribution to illustrate two concepts: (1) use
of information on correlations in a Monte Carlo
simulation; and (2) specifying distributions for
uncertainty in parameter estimates.  A brief
explanation of the bivariate distribution is presented
followed by an example comparing assumptions of
no correlation and perfect correlation.  A less
complex example of a method for addressing
correlations in PRA is given in Exhibit B-8.

Properties of a Bivariate Normal Distribution

One approach that can be used to correlate
two random variables is to specify a bivariate normal distribution, which allows for the distribution of
one variable to be sampled conditional on the other.  A bivariate normal distribution is a special case of a
joint distribution in which both x and y are random independent normally distributed variables.  A
bivariate normal distribution can be specified for all correlation coefficients including ρ=0, ρ=1, and
ρ=−1.  The bivariate distribution has a three dimensional shape and for ρ=0, from a bird’s-eye view, is
perfectly circular.  As correlation increases (i.e. moves towards -1 or 1) this circle narrows and flattens to
an elliptical shape, and finally for perfect correlation →=1 and ρ=-1) becomes a straight regression line
with a r2=1.  In three dimensional space the probability of obtaining measurement pairs (x, y) in the
region is equal to the volume under the surface in that region.  To completely specify the bivariate
normal, estimates of the arithmetic mean and variance of the two parameters, as well as the correlation
coefficient (:X and :Y, variances F2

X and F2
Y , and correlation coefficient D) are needed.

Figure B-8.  Probability plot of meal size data from consuming anglers.  The left panel shows the combined
data, with a departure from linearity at ~ 400 g/meal.  The right panel shows the data split between high
consumers (top line) and low consumers (bottom line); note that separate lognormal probability plots were
reconstructed for both subsets of the data.  The point at which to “split” the distribution in the left panel is
somewhat subjective.  The break would be more obvious if the two distributions did not overlap.

THIS EXAMPLE PRESENTS...

• Description of the assumptions associated
with the bivariate normal distribution

• Guidance on simulating the bivariate normal
distribution for two random variables

• Application of bivariate normal to a simple
linear regression equation relating
contaminant concentrations in soil and dust
(see Figure B-9).  Results are compared to
the assumption of no correlation and perfect
correlation
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X ZX X= + ×µ σ 1 Equation B-8

Y ZY Y= + ×µ σ 2 Equation B-9

In a bivariate normal distribution, values of y corresponding to each value of x follow a normal
distribution (Snedecor and Cochran, 1989).  Analogously, the values of x corresponding to each value of
y follow a normal distribution.  Furthermore, if two random variables, X and Y, jointly follow a bivariate
normal distribution, the marginal distribution of X is normal with mean :X and variance F2

X, and the
marginal distribution of Y is normal with mean :Y and variance F2

Y.

Conditional Distributions

Assume we are interested in the conditional distribution of X given a certain value for Y.  For
example, if X and Y are positively correlated, we would expect that relatively high values of X tend to
correspond with relatively high values of Y.  The conditional distribution of X given that Y=y, where y
represents a specific value for the random variable Y, is a normal distribution with:

Likewise, the conditional distribution of Y given that X=x, is also normal with:

These general equations can be used to generate a correlated pair (X, Y), as described below. 

*Note that the mean of the conditional distribution of X is a function of the given value of Y but the
variance depends only on the degree of correlation.  

General Approach for Correlating X and Y

To generate a correlated pair (X, Y), first generate X using a random value Z1 from the standard
normal distribution:

Next, express Y as a function of the conditional mean and variance of Y given X and a second standard
normal variate Z2:
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and generate a correlated Y by plugging Equation B-7 into Equation B-9.  Using algebra, the combined
equations yield the following simplified expression for generating Y:

The important component of this equation is that two
random variates are needed (Z1 and Z2).

An alternative, but less general approach
would be to obtain Y by first generating a normal
variate X (Equation B-8) and then plugging that
value into the regression equation of Y on X to obtain
the associated value of Y.  While this method
maintains a correlation between X and Y, it will
underestimate parameter uncertainty.  The results are
equal only for the special case of perfect correlation
(D=1.0) between X and Y.  Therefore, the more
general bivariate normal distribution approach (given
by Equations B-8 to B-10) is recommended for
correctly correlating X and Y because it provides a
more robust estimate of parameter uncertainty.

Application of Bivariate Normal Distribution to
Correlate Concentrations of Zinc in Soil and Dust

Assume random sampling of soil and dust zinc concentrations occurs in a residential area. 
Composite samples of soil and dust are collected from 21 locations such that samples are paired (i.e.,
each soil sample is co-located with a dust sample) (Table B-9).  First the relationship between the zinc
concentration in soil and dust is evaluated using simple least-squares regression.  Next, the bivariate
normal distribution for the slope ($1) and intercept ($0) is determined, yielding an arithmetic mean and
standard deviation for each parameter (:b0, F2

b0, :b1, and F2
b1), and correlation coefficient D between $1

and $0.  In this context, the bivariate normal distribution may be considered a distribution for uncertainty
in the parameter estimates.

Three simulation methods are employed to demonstrate the effect of assuming a bivariate normal
distribution for parameters vs. perfect correlation, or independent parameters.  Specifically:

(1) The slope and intercept of the regression line are described by a specific form of the bivariate
normal distribution (i.e., follow Steps 1, 2 in Exhibit B-9, and use Equation B-10 instead of
Step 4).

(2) The slope and intercept of the regression line are described by a general form of the bivariate
normal distribution (i.e., follow Steps 1 to 4 in Exhibit B-9).

(3) The slope and intercept of the regression line are described by independent normal distributions
(i.e., follow Steps 1–4 in Exhibit B-9, but omit the correlation coefficient D in Steps 2 and 4).

EXHIBIT B-9

STEPS FOR SIMULATING UNCERTAINTY IN
LINEAR REGRESSION EQUATION USING A
BIVARIATE NORMAL DISTRIBUTION TO

CORRELATE PARAMETERS (#0, #1)

(1) Select Z1 from a standard normal distribution
Z~ N(0, 1)

(2) Calculate $0 using Equation B-8, where X=$0,
:x=:b0, and F2

x=F2
b0

(3) Select Z2 from a standard normal distribution
Z~ N(0, 1)

(4) Calculate $1 using Equation B-10, where
Y=$1, :y=:b1, F2

y=F2
b1, D=correlation between

$0 and $1
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For each approach, Monte Carlo simulations with I=5,000 iterations were run to determine the
set of parameter values ($0, $1) for a simple linear regression equation.  Typically, the uncertainty in the
parameter estimates is not accounted for when simple linear regression equations are used to relate to
exposure variables in a model.  Such an approach may fail to account for important sources of parameter
uncertainty.  Figure B-10 (middle panel) illustrates the preferred approach for characterizing parameter
uncertainty based on the bivariate normal distribution. (Note that the correlation coefficient relating the
intercepts and slopes generated from the simulation is consistent with the correlation coefficient that
describes the bivariate normal distribution; this is a good check that the simulation was set up correctly
and run for a sufficient number of iterations). These results are contrasted with results using a form of the
bivariate normal (Equation B-10) that underestimates uncertainty (top panel) unless parameters are
perfectly correlated.  In addition, the simplistic approach of sampling from independent normal
distributions (bottom panel), yields a “shot gun” scatter plot.  Sampling from independent normal
distributions results in unlikely extreme combinations of the slope and intercept more often than the
correct bivariate normal approach; propagating this bias through a risk model may severely bias estimates
of uncertainty in risk. 

Bivariate Normal
Distribution for

Parameters of the
Regression Equation 

B0 mean 173.9

variance 4162.2

B1 mean 0.193

variance 0.0063

s2 27857.4

Cov (B0, B1) -4.2428

r -0.8254
Figure B-9.  Simple linear regression of zinc concentrations in soil
and dust.

Table B-9.  Zinc concentrations in paired (i.e., co-located) soil and dust samples
(ppm) for n=21 locations.
Sample Soil (Xi) Dust (Yi) Sample Soil (Xi) Dust (Yi)

1 120 216 12 560 200
2 190 149 13 560 256
3 270 83 14 720 496
4 285 508 15 800 239
5 310 215 16 880 203
6 340 219 17 910 757
7 350 203 18 1035 676
8 380 101 19 1445 426
9 440 178 20 1600 522

10 480 232 21 1800 276
11 560 199
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Figure B-10.  Results of Monte Carlo simulation
(n=5000 iterations) to estimate the slope and intercept of a
regression equation.  Top panel reflects the bivariate normal
distribution for the special case that fails to capture the
parameter uncertainty; middle panel reflects the preferred
bivariate normal distribution with D=-0.825 based on
empirical paired data; bottom panel reflects sampling from
independent normal distributions.
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